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Abstract 

In designing and performing surveys of animal abundance, monitoring programs often struggle 

to determine the sampling intensity and design required to achieve their objectives, and this 

problem greatly increases in complexity for multispecies surveys with inherent tradeoffs among 

species. To address these issues, we conducted a multispecies stratified random survey design 

optimization using a spatiotemporal operating model and a genetic algorithm that optimizes both 

the stratification (defined by depth and longitude) and the minimum optimal allocation of 

samples across strata subject to prespecified precision limits. Surveys were then simulated under 

those optimized designs and performance was evaluated by calculating the precision and 

accuracy of a resulting design-based abundance index. We applied this framework to a 

multispecies fishery-independent bottom trawl survey in the Gulf of Alaska, USA. Incorporating 

only spatial variation in the optimization failed to produce population estimates within the 

prespecified precision constraints, whereas including additional spatiotemporal variation ensured 

that estimates were both unbiased and within prespecified precision constraints. In general, 

results were not sensitive to the number of strata in the optimized solutions. This optimization 

approach provides an objective quantitative framework for designing new, or improving existing, 

survey designs for many different ecosystems. 
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1. Introduction 

Productive and sustainable fisheries provide socioeconomic opportunities and ensure food and 

nutritional security. In the United States, commercial wild-capture fisheries totaled 4.3 million 

metric tons valued at $5.6 billion in 2018 (NMFS, 2020). Fisheries stock assessments provide the 

basis for managing these fisheries. Fishery-independent surveys are often the primary source of 

inputs for stock assessment models, providing information on the abundance and composition of 

fish populations. Thus, properly designed fisheries surveys are integral to ensuring that the most 

scientifically robust data products are used for fisheries management (Smith and Hubley, 2014; 

Zimmermann and Enberg 2016; Muradian et al. 2019). Survey data are also used to address a 

variety of research questions including species distributions over time (e.g., Thorson et al., 

2015), ecosystem status indicators through environmental data collection (e.g., de Boois, 2019; 

Zador et al., 2019). 

Accuracy and precision are the main quality metrics of a fisheries survey and are constrained by 

total sampling effort and budget. The precision of a survey, described as either a variance or a 

coefficient of variation (CV) is an important survey output commonly used for survey 

comparison studies (Overholtz et al., 2006), evaluations of survey outputs quality (Cao et al., 

2014), and stock assessments (Francis, 2011). That said, fisheries surveys need to be flexible to 

many sources of logistical constraints and uncertainties while still maximizing the objectives of 

producing survey products with high accuracy and precision. Unavoidable survey effort 

reduction due to budgetary constraints, inclement weather, or vessel breakdowns pose serious 

implications to the reliability of fisheries surveys (ICES, 2020). Reductions in survey effort 

through a reduction in sampling intensity or frequency can compromise the precision and bias of 
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abundance indices (ICES, 2020; Hutniczak et al., 2019; von Szalay, 2015). Additionally, fishery-

specific constraints like gear type, coverage rate, and vessel type are other additional 

considerations when optimizing survey design (Miller et al., 2006). Given the high operating 

costs of fisheries-independent surveys and that these changes typically occur at time scales that 

leave little time for planning and quantitative evaluation, there is a need for rapid survey 

optimization tools to guide survey changes within a flexible framework. 

The multispecies nature of many surveys means that invariably there are interspecific tradeoffs 

in designing a survey that optimizes over many species (and possibly life stages within species) 

with different spatiotemporal distributions and varying levels of directed targeting (Wang et al., 

2018; Smith et al., 2011). The magnitude of variance in species abundance across space and/or 

time affects the optimal spatial extent and frequency of surveys (Lanthier et al., 2013; Rhodes 

and Jonzén, 2011). In some cases, there may be temporary needs for increased precision for 

certain species and/or regions (e.g., when a stock is close to a limit threshold or displays sudden 

declines in abundance; Laurel and Rogers, 2020; Barbeaux et al., 2017). Further, tradeoffs in 

survey design strategies can occur among data uses e.g., indices of abundance, compositional 

data, species distribution shifts, and population responses to marine reserve implementation 

(Smith et al. 2011; Miller et al., 2006 ). Thus, the evaluation of the effects of changes in total 

survey effort needs to also consider tradeoffs of quality metrics among species. 

To illustrate the development of a fishery survey design optimization framework while 

addressing the above challenges related to survey effort reduction and tradeoffs among species, 

we focused on a case study involving the Gulf of Alaska (GoA) groundfish stratified random 
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bottom-trawl survey (BTS). With a relatively long time series (nearly 40 yr in this case) of data 

on the distribution of these species, both spatiotemporal variability and/or species covariation 

can be incorporated into a more goal-driven and objective survey design optimization (e.g., Peel 

et al., 2012). The stratified survey optimization was conducted using a genetic algorithm that 

optimizes both the stratification of the spatial domain as to minimize total sample size subject to 

prespecified precision constraints for a given number of strata. We used a previously built 

multispecies spatiotemporal fish density distribution model as data inputs to the optimization. 

Surveys were then simulated under those optimized survey designs and the precision and bias of 

the population estimates were calculated as performance metrics. This framework for optimizing 

a stratified random survey design for estimating abundance with respect to a model-generated 

spatiotemporal distribution can be used to evaluate the multispecies tradeoffs of varying 

sampling intensities on the quality of fisheries survey estimates. 

2. Methods 

The framework of the optimization is presented in Figure 1. Section 2.1 is a brief overview of the 

multispecies spatiotemporal operating model, from which predicted densities are used as data 

inputs to the survey optimization algorithm. The optimization problem is defined in Section 2.2 

and the algorithm used to solve the optimization problem is described in Section 2.3. Section 2.4 

describes how the survey optimization is conducted in the GoA and 2.5 describes the simulation 

of those optimized survey designs against the operating model and the resulting performance 

metrics. The associated code can be found on the corresponding author’s GitHub page 

(https://github.com/zoyafuso-NOAA/Optimal_Allocation_GoA_Manuscript ). 

https://github.com/zoyafuso-NOAA/Optimal_Allocation_GoA_Manuscript
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Three types of CVs are defined in the following sections with slightly different interpretations 

and uses in this framework. In sections 2.2-2.4, CVs that incorporate variability in density across 

the domain and observed years for each species from the operating model described in section 

2.1 and are used as prespecified constraints of precision to guide the optimization of a new 

multispecies stratified survey design. These CVs utilize population-level stratum variance 

statistics that integrate the many sources of process variability as specified in the OM in Section 

2.1 with the exception of additional sources of measurement error. These CV constraints can be 

interpreted as the expectation of the sample CV for a given level of survey effort. The survey 

simulation in Section 2.5 is important in establishing precision levels more consistent with what 

would be observed in the sampling process. Within a simulation framework, the second CV 

defined in 2.5 describes the variability of an abundance index across many simulated surveys 

relative to the the true index, interpreted as the realized or “true” sampling CV (Kotwicki and 

Ono, 2019), a metric impossible to calculate when analyzing actual surveys. The sample CV is 

the third type of CV used in this analysis and refers to the CV associated with the abundance 

index calculated for one replicate survey. Unlike the CV constraints, these CV utilize sample-

level statistics of stratum variance and are year-specific. The congruence of these sample CVs to 

the realized true CV is a performance metric defined in Section 2.5. 

2.1 Operating Model 

To serve as an operating model, we fitted a multispecies spatiotemporal distribution model to 

catch rate data using a vector-autoregressive spatiotemporal model (VAST; Thorson and Barnett, 

2017). Readers are referred to the Supplementary S1 for more detail on the VAST operating 

model, but a brief description of the relevant outputs follows. We fitted the VAST model to 
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catch-per-unit-effort data of GoA groundfishes collected from a fishery-independent BTS using a 

stratified random sampling design (von Szalay and Raring, 2018). We restricted the input data to 

the years 1996, 1999, and every other year from 2003 to 201 9 to ensure consistency in 

sampling design and species identification (11 observed data years). Fourteen species and one 

species group were included to represent the groundfish complex in the GoA, based on 

commercial value and the dependence of stock assessment models on survey-derived abundance 

indices: Atheresthes stomias, Gadus chalcogrammus, G. macrocephalus, Glyptocephalus 

zachirus, Hippoglossoides elassodon, Hippoglossus stenolepis, Lepidopsetta bilineata, L. 

polyxystra, Limanda aspera, Microstomus pacificus, Sebastes alutus, S. polyspinis, S. variabilis, 

and Sebastolobus alascanus. Due to identification issues between two rockfishes, Sebastes 

melanostictus and S. aleutianus, the catches of these two species were combined into a species 

group (Sebastes spp.) we will refer to as “Sebastes B_R” (blackspotted rockfish and rougheye 

rockfish, respectively) hereafter. 

The density (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔 ) of each species or species group was predicted onto the GoA survey spatial 

domain at a resolution of 3.7 by 3.7 km (𝑖𝑖: 1, 2, … , 𝑁𝑁 = 23 339 cells; some prediction grid cells 

had smaller area due to intersections with survey domain boundaries) for each species 

(𝑔𝑔: 1, 2, . . . , 𝐺𝐺 = 15 species) and observed year (𝑡𝑡: 1, 2, . . . , 𝑇𝑇 = 11 observed years). Figure 2 

shows the average spatial distribution over time for each species . These predictions were 

taken to represent “true” densities values, which were used to generate optimal survey 

designs and evaluate the performance of simulated surveys given those designs. As the primary 

measure of survey performance is the accuracy and precision of the total abundance estimate, we 

define this by the proxy of mean density. 
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2.2 Survey Optimization Problem 

The goal of the multispecies stratified survey design optimization is to jointly optimize the 

stratification and the sample allocation across strata (ℎ: 1, 2, . . . 𝐻𝐻) by finding that which 

minimizes total sample size, subject to prespecified precision constraints for each species. 

Specifically, the objective function is to minimize total sample size subject to G prespecified 

coefficient of variation (CV) constraints (𝑈𝑈1, 𝑈𝑈2, … , 𝑈𝑈𝐺𝐺 ): 

𝐻𝐻 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ℎ=1 𝑚𝑚ℎ [Equation 1] 

𝑠𝑠. 𝑡𝑡. 
𝐶𝐶𝐶𝐶(𝑌𝑌1) < 𝑈𝑈1 

⋯ [Equation Set 2] 

𝐶𝐶𝐶𝐶(𝑌𝑌𝐺𝐺 ) < 𝑈𝑈𝐺𝐺 , 

�𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌𝑔𝑔� 
𝐶𝐶𝐶𝐶�𝑌𝑌𝑔𝑔� = [Equation 3] 

𝑌𝑌𝑔𝑔 

2 

�𝑁𝑁ℎ 
2 𝑆𝑆ℎ,𝑔𝑔 (1 − 

𝑛𝑛ℎ𝐻𝐻 𝐶𝐶𝑉𝑉𝑉𝑉(𝑌𝑌𝑔𝑔) = ∑ � ) [Equation 4] ℎ=1 𝑁𝑁 𝑛𝑛ℎ 𝑁𝑁ℎ 

where 𝑚𝑚ℎ and 𝑁𝑁ℎ are the sample sizes and number of sampling units in stratum h, respectively. 

By leveraging density predictions provided by the OM, this optimization is specified using 

population-level statistics. 𝑌𝑌𝑔𝑔 is the population mean of species 𝑔𝑔 averaged over the cells in the 

spatial domain and over observed years. 𝐶𝐶𝑉𝑉𝑉𝑉(𝑌𝑌𝑔𝑔) in Equation 4 is the stratified random sampling 

variance associated with the population mean. Careful consideration is needed for this variance, 

2specifically the stratum variance 𝑆𝑆ℎ,𝑔𝑔, defined in Equation 4. The OM provides predicted 

densities across all cells and observed years for each species and integrates many sources of 

variation including temporal (year-to-year), habitat covariates (depth), species covariation, and 

additional spatial and spatiotemporal variation. A common issue in survey design optimization is 
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how to integrate data  from previous surveys (Francis, 2006) , thus we  investigated two types of  

stratum variances that incorporated the OM-derived densities predicted across the observed 

survey y ears in the GoA  BTS:        

      

1) Spatial-only stratum variance:  The first method was to reduce the temporal dimension by  

averaging the predicted densities from the OM over the observed  years for  each cell in the spatial  

domain. In this “spatial-only” optimization, 𝑆𝑆2ℎ,𝑔𝑔  is the population  stratum  variance of density for  

species  𝑔𝑔  in stratum ℎ:  

𝑁𝑁ℎ 

2
𝑆𝑆2 1 
ℎ𝑔𝑔 = ��𝑦𝑦��𝑔𝑔𝑔𝑔��∙ − 𝑦𝑦��ℎ��𝑔𝑔�� , [𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑡𝑡𝑖𝑖𝐸𝐸𝑚𝑚  5] 

𝑁𝑁ℎ − 1 
𝑔𝑔=1 

 
where  𝑦𝑦��ℎ��𝑔𝑔�  is  the population mean density  estimate of  species  𝑔𝑔  averaged across  all observed 

years and  cells contained within stratum ℎ, and  𝑦𝑦𝑔𝑔𝑔𝑔∙  is the predicted density of species  g  in cell i  

(where cell  i  is in stratum h) averaged  across observed  years.  Note the  use of the 𝑁𝑁ℎ  term in 

Equation 5 denotes a  population-level  stratum variance.   

 

2) Spatiotemporal stratum variance: A potential issue with the spatial-only version of the  

population stratum variance is underestimating the total “known” variability  within a stratum by  

averaging over the year-to-year  as well as spatiotemporal variation  explicitly  modeled in  the 

OM.  Thus, for this  “spatiotemporal” optimization, the  population-level  stratum variance  in 

Equation 5 w as modified to incorporate both within-stratum  (note the  summation range between 

𝑖𝑖 = 1  to 𝑁𝑁ℎ) density variation  and within-grid cell densities  variation across years  (note the  

summation range between 𝑡𝑡 = 1  and 𝑇𝑇):  

2
𝑆𝑆2 1 𝑇𝑇 𝑁𝑁ℎ 
ℎ𝑔𝑔 = ∑𝑔𝑔=1 ∑ 𝑔𝑔=1� 𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑦𝑦��ℎ��𝑔𝑔��  [Equation 6]            

𝑇𝑇𝑁𝑁ℎ−1 
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2.3 Optimization of Strata Boundaries and Sample Allocation 

Comprehensive brute-force searches for the optimum stratification of the spatial domain and 

optimum allocation of samples are usually intractable for moderately sized problems. Thus, we 

searched for optimal stratifications and survey effort allocations via a genetic algorithm using the 

R package SamplingStrata (Barcaroli, 2014; Ballin and Barcaroli, 2013) . The genetic 

algorithm uses evolutionary principles such as fitness-based selection, recombination, and 

mutation to iteratively search for an optimal stratification and sample allocation. Below, we 

provide a brief description of the algorithm and settings used but readers are referred to Ballin 

and Barcaroli (2013) for more technical details. 

The optimization initializes with 30 random stratifications (a prespecified number of candidate 

solutions) based on two auxiliary variables, bottom depth (m) and longitude (eastings, km) for a 

user-defined number of strata. Here, we explore results from 5 to 60 strata to determine how the 

number of strata influences the precision of the abundance estimate. In the GoA, gradients across 

both depth and location have been observed to describe major patterns in demersal species 

composition (Mueter and Norcross, 2002). Longitude was used as a one-dimensional east-west 

location proxy. For each candidate solution, the Bethel algorithm (Bethel, 1989) is used to 

optimize the allocation of the minimum sample size across strata, subject to equations 1-2. 

Fitness is defined as the resultant sample size from the Bethel algorithm, with solutions with 

lower sample sizes having higher fitness. Elitism occurs by taking the solutions with highest 

fitness (defined a priori to be solutions in the top 10th percentile for smallest sample size) and 

automatically advancing them to the next iteration of the algorithm. In the next iteration the 
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remaining solutions are selected with probability proportional to their fitness values to 

“procreate” a new solution by applying a crossover of the solutions. Random changes in the 

stratifications, or mutations, are then applied at a given rate to the resultant solution. The 

mutation rate defines how often random changes to the solutions occur and was tuned to 1/(1 + 

𝐻𝐻) based on previous tuning guidelines (G. Barcaroli, personal communication) to reach 

reasonable convergence times. The process of procreation occurs until 30 candidate solutions are 

included in the next iteration of the algorithm. The algorithm is conducted for a total of 200 

iterations, a value (along with the choice of 30 candidate solutions) chosen to ensure that, at least 

qualitatively, the algorithm reached an asymptotically optimal solution within a reasonable 

amount of computation time (see Supplementary S3 for an example of the algorithm output). 

2.4 Optimization Schemes 

In the GoA, total sampling effort is primarily determined by how many boats are available to 

conduct the survey, with all vessels operating for the same duration of time. These levels of 

sampling intensity correspond to approximately: 280 samples (1 boat), 550 (2 boats) and 820 (3 

boats) (von Szalay and Raring, 2018; von Szalay et al., 2010). Thus, we focused on optimized 

survey designs under these three sample size scenarios for a given number of strata. The 

optimization does not maximize precision constrained by a total sample size, thus we needed 

to set the CV constraints (Equation Set 2) for each species to meet the three sample size 

scenarios regardless of which version of the stratum variance (spatial-only or spatiotemporal, 

Equations 5 or 6, respectively) is used. We implemented this systematically using two sets of 

rules depending on whether the CV constraint was constant or varying among species: 
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1) One-CV constraint scenario: CV constraints were set to the same value across species. 

Initially the CV constraint was set to some arbitrarily high value (e.g., 0.30) and the 

optimization was conducted to produce the optimal stratification and total sample size. 

Then, the population CV constraint is incrementally decreased (e.g.. 0.30 to 0.29) and the 

optimization was conducted again. By gradually decreasing the CV constraint, the 

optimized sample size slowly increases. This increment was chosen to be small enough to 

balance having adequate coverage over the three boat-effort scenarios (n = 280, 550, 820 

stations) within a reasonable total computation time. This process was iterated until the 

range of considered sample sizes was captured (i.e., until the optimized sample size was 

≥ 820). 

2) Species-specific CV constraint scenario: CV constraints were allowed to differ across 

species. Similar to the one-CV constraint scenario, the CV constraint was initialized to be 

the same across species at some arbitrarily high value (e.g., 0.30). The optimization was 

conducted, and the optimized CVs across species (i.e., 𝐶𝐶𝐶𝐶(𝑌𝑌1), 𝐶𝐶𝐶𝐶(𝑌𝑌2), … 𝐶𝐶𝐶𝐶(𝑌𝑌𝐺𝐺 )) were 

saved from the optimization. The CV constraints for the next instantiation were 

calculated by reducing the optimized CVs in the previous run by some proportional 

increment (e.g., 5%) for each species. Similar to the one-CV method, this process was 

iterated until the range of the three boat-effort scenarios was captured. 

2.5 Simulation of data collection 

For each combination of strata number and sample size scenario, the optimized survey was 

simulated D = 1000 times. 𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 is the stratified random sample estimate of mean density of 

species g at time t for simulated survey d. 𝐶𝐶𝐶𝐶(𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 ) is the CV of the survey estimate and is 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

276 similar to Equations 3-4 except using the sample stratum variance  instead of the population 

stratum variance. To evaluate the precision and accuracy of the abundance estimates resulting  

from simulated surveys, we calculated the  following performance metrics for each species.  

 

Since our procedure does not optimize sample CVs directly, we  evaluated the expected effect of  

a survey optimized with respect to population CVs on performance metrics  of the sample CVs  

derived from simulated surveys. The “true” CV,  𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑌𝑌𝑔𝑔𝑔𝑔 ), describes the precision of the  

mean density  estimate of  species  g  at time  t  across replicate surveys and is the standard deviation 

of the simulated survey estimates (where  �𝑉𝑉∙�𝑔𝑔𝑔𝑔��  is the mean density estimate of  species  g  at time  t  

averaged across the D  surveys) relative to  𝑉𝑉𝑔𝑔𝑔𝑔, the true mean density of  species  g  at time  t:  

� 2
(𝐷𝐷 − 1)−1 ∑𝐷𝐷 

𝑑𝑑=1�𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 − �𝑉𝑉∙�𝑔𝑔𝑔𝑔��  � 
𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝑌𝑌𝑔𝑔𝑔𝑔� =  . [𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑡𝑡𝑖𝑖𝐸𝐸𝑚𝑚  7]  

𝑌𝑌𝑔𝑔𝑔𝑔 
Relative root mean square error of CV, 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸(𝐶𝐶𝐶𝐶(𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 )), is a measure of uncertainty of the  

replicate sample CVs  of species  g  at time  t  and is  a composite measure of the dispersion and bias  

of the  replicate sample CVs       about the  true      CV:  

2
�𝐷𝐷−1 ∑𝐷𝐷 

𝑑𝑑=1 �𝐶𝐶𝐶𝐶�𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 � − 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝑌𝑌𝑔𝑔𝑔𝑔�� 
𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 �𝐶𝐶𝐶𝐶�𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 �� =  . [𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑡𝑡𝑖𝑖𝐸𝐸𝑚𝑚  8]  

𝐷𝐷−1 ∑𝐷𝐷 
𝑑𝑑=1 𝐶𝐶𝐶𝐶�𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 � 

 
Lastly, relative biases  (RB) of the mean density and CV estimates relative to their respective true 

values were calculated as  

∑𝐷𝐷
𝑅𝑅𝑅𝑅(𝑉𝑉 ) = 100%  𝑑𝑑=1(𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 − 𝑌𝑌𝑔𝑔𝑔𝑔 )

𝑑𝑑𝑔𝑔𝑔𝑔 [𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑡𝑡𝑖𝑖𝐸𝐸𝑚𝑚  9]  
𝐷𝐷𝑌𝑌𝑔𝑔𝑔𝑔 
 

∑𝐷𝐷
𝑑𝑑=1(𝐶𝐶𝐶𝐶(𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 ) − 𝐶𝐶𝐶𝐶 (𝑌𝑌 )) 

𝑅𝑅𝑅𝑅�𝐶𝐶𝐶𝐶(𝑉𝑉𝑑𝑑𝑔𝑔𝑔𝑔 )� = 100%  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔 [𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑡𝑡𝑖𝑖𝐸𝐸𝑚𝑚  10]  
𝐷𝐷  𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑌𝑌𝑔𝑔𝑔𝑔 ) 
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3. Results 

3.1 Optimal stratification : The optimization solutions with the closest sample sizes to each of 

the three intended sample sizes were chosen as the representative solutions. Figure 3 shows those 

three representative solutions along with examples of simulated survey stations for five, ten, and 

fifteen strata. The longitudinal variable was generally cut into the west, central, and eastern parts 

of the spatial domain. Strata in the eastern part of the domain were often connected with the 

deeper continental slope strata. Sampling density was concentrated in the western and central 

parts of the spatial domain, with sparse sampling in the eastern portion. Solutions across boat-

effort scenarios within a strata number scenario were generally consistent in the strata 

boundaries. 

3.2 Tradeoff between sample size and CV constraint: The spatial-only optimization led to one, 

two, and three boat solutions with expected CV constraints of 0.19, 0.13, and 0.10, respectively 

(Figure 4). These CV constraints are from the one-CV constraint approach, meaning these values 

represent the maximum expected sampling CV that any one species can exhibit. The addition of 

spatiotemporal variability of the optimization increased the CV constraints across boat-effort 

scenarios to 0.28, 0.21, and 0.17, respectively. For a given CV constraint, the addition of 

spatiotemporal variability required roughly 2-3× more samples in the optimal solution. Figure 4 

shows the relationship between sample size and CV for a five-strata scenario only, but this 

pattern was consistent across scenarios with different numbers of strata (Supplementary S4). 

3.3. Expected vs realized precision: True CV encompasses the variability of the mean density 

estimates across realized survey replicates relative to the true mean density and is different from 
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the prespecified (expected) CV constraints used to constrain the survey optimization algorithm. 

Simulation testing allows for the evaluation of the congruency of the true CV across years to the 

CV constraint. Simulated surveys under the spatial-only optimization failed to produce true CVs 

lower than the CV constraint consistent across observed years for some species (Figure 5). The 

median of the distribution of true CV across years for Sebastes alutus, S. polyspinis, and S. 

variabilis were 25-50% higher than the CV constraints specified in the optimization. When 

spatiotemporal variability was included in the optimization, all species were surveyed with true 

CVs lower than the CV constraints for the majority, if not all, years observed. Further, under the 

species-specific CV constraint scenario, all species were surveyed with true CVs at or slightly 

below their respective CV constraints. Additionally, the medians of the distributions of the true 

CVs were much closer to the expected CV than the one-CV constraint scenarios. These patterns 

were consistent across scenarios with different numbers of strata (Supplementary S5). 

3.4 True CV across strata and sample sizes: Increasing sampling intensity reduced the true CV 

and the spread of the bias of the mean density estimate across species and strata scenarios 

(Figures 6-7). Estimates of mean density across species showed low bias (Figure 7), with slightly 

negative median biases up to 5%. Increased samples across species led to further reductions in 

bias and there were no noticeable differences in this effect across number of strata. There were 

also no noticeable trends in true CV across number of strata for either the one-CV constraint 

(Supplementary S6) or species-specific CV constraint optimizations (Figure 7). 

3.5 Relative Root Mean Square Error of CV across strata and sample sizes: The RRMSE of CV 

encompasses both the bias and variability of the simulated sample CVs about the true CV. 
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Similar to true CV, increasing sampling reduced the uncertainty and spread of the bias of the 

sample CV estimates across species and strata scenarios with high consistency between both 

optimization types (Figures 8-9). An exception was the RRMSE of CV being higher for larger 

numbers of strata for a handful of species (e.g., slope-dwellers such as Sebastes B_R and 

Sebastolobus alascanus) for the one-CV constraint optimization (Figure 8). There was less of a 

noticeable trend across strata in RRMSE of CV for the species-specific CV constraint 

optimization than for the one-CV constraint optimization (Supplementary S7). The species-

specific CV constraint optimization was more consistent in demonstrating the pattern of lower 

true CV and RRMSE of CV with increasing sample sizes, particularly with M. pacificus, 

Sebastolobus alascanus, Sebastes B_R, L. bilineata, and L. polyxystra. Simulated sample CVs 

were slightly negatively biased relative to their respective true CV value with smaller magnitude 

and variability with increasing sampling intensity (Figure 9), regardless of the CV-constraint 

approach used. 

4. Discussion 

The inclusion of spatiotemporal variability in the population stratum variance calculation 

(Equation 6) led to CV constraints that were within the distribution of the true or realized CVs of 

abundance when surveys were simulated. These CV constraints are equivalent to those the user 

defines initially in Equation Set 2, thus the main goal of the survey simulation was the evaluate 

the congruency between the expected CV constraints and realized CVs in the form of the true 

CVs. In contrast, CV constraints using the spatial-only version of the population stratum 

variance (Equation 5) were not consistent with true CVs across species, with true CVs for some 

of the more variable Sebastes species vastly underestimated. The issue of including historical 
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variation in the survey data has been discussed in detail previously (Francis, 2006), one 

complication being that incorporating year-to-year variation in our operating model may 

overestimate the within-stratum variability. In fact, the tradeoff of adding spatiotemporal 

variation to the stratum variance calculation (Equation 6) was a 2-3× increase in sample size for 

a given CV constraint (Figure 4), with many species’ distributions of true CV lower than their 

respective CV constraints (Figure 5). However, the consistency between the true CVs and 

their respective CV constraints across species and years supports the use of this optimization to 

provide robust and consistent indices of abundance. Furthermore, future applications of this 

approach should also integrate within the optimization framework other important sources of 

observation error not included in this analysis, e.g., measurement error, untrawlable areas, 

detectability (Field et al., 2005), and sampling efficiency (Kotwicki and Ono, 2019), especially 

when realistically simulating surveys and assessing performance. The exclusion of additional 

sampling error in our framework limits the absolute interpretability of the CV constraints and t 

rue CVs, thus these CVs could be treated as the “best case” or lower limits of expected 

sampling CVs. 

Specifying precisions constraints for each species is a clear advantage of this survey optimization 

framework and allows increased flexibility for survey planners to meet desired goals in their 

survey designs. When we initially used the one-CV constraint method to solve the optimization 

problem, there were some inconsistencies in simulated t rue CV (Supplementary S6) and 

RRMSE of CV (Figure 8) and sampling intensity for some species. With the one-CV constraint 

approach, a single CV constraint is defined for all species, thus the CV constraint imposed in 

the optimization is strict for some species and less so for others, which can produce these 
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inconsistent findings. The species-specific CV constraint approach seemed to produce more 

consistent positive trends in the performance metrics with increasing sampling intensity by 

defining CV constraints for each species individually. By setting constraints for each species 

specifically and allowing the CV constraints to reduce proportionally for each species , 

solutions performed more consistently with increasing sampling intensity. Setting CV constraints 

for each species also gives survey planners more flexibility to emphasize or de-emphasize certain 

species within the optimization more explicitly while evaluating the resulting tradeoffs in 

precision for the other species. The CV constraint utilized in this optimization was a 

maximum constraint but additionally, minimum CV constraints can be also provided from stock 

assessment programs to provide additional constraints on the optimization. We naively assumed 

in the species-specific CV approach that the CV constraints need not be lower than 10%, but 

these values can be based on different priorities for different species. Work is currently being 

done for that purpose in the Gulf of Alaska stock assessments (ICES, 2020), based on how 

sampling precision affects uncertainty of assessment outputs such as estimated biomass. 

Ultimately, a cost-benefit analysis evaluating the relationship between total sampling effort, 

precision, and downstream management quantities like total allowable catch can more directly 

link the multispecies tradeoffs of surveys on the economic value of fisheries (Francis, 2006). 

While there are many approaches to optimizing survey design, the framework introduced 

provides a new approach to optimize a survey design that is particularly advantageous for 

estimating animal abundance time series. Previous simulation studies have shown that reductions 

in precision from lowered sampling can be alleviated by choosing a more optimal stratification 

scheme (Xu et al., 2015). Peel et al. (2012) developed a survey optimization based on a 
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multispecies model-based (Generalized Additive Model) survey design. With the increasing 

usage of model-based spatiotemporal methods to develop indices of abundance (Thorson and 

Barnett, 2017; Thorson et al., 2015, 2017), it is becoming more relevant to develop formalized 

survey design optimizations in tandem with these model-based estimation methods. Other 

weighted multiple-criterion optimizations of stratified surveys focused on optimizing over 

additional data types like compositional and bycatch data (Miller et al., 2006). With emerging 

OMs like those presented in the SimSurvey R package (Regular et al., 2020), age- and spatially 

explicit OMs are becoming more accessible to incorporate other data types in a survey 

optimization. 

The framework that we present can be used as a tool for long-term decision support for 

improving current surveys and resulting survey data products such as abundance indices and 

age or size composition estimates. For example, m odifying the current stratified survey 

design in the GoA is a long-term process that will involve rigorous review and operational 

modifications over multiple years. Fortunately, the switch to a more efficient survey design 

would not require calibration, as the change would be between two stratified random designs 

which are inherently unbiased. Work is currently ongoing to compare the performance of this 

survey design framework versus the current GoA survey design via simulation testing. Currently 

the GoA BTS survey uses a stratified random design with 59 strata defined by bathymetry, 

bottom terrain, and statistical reporting designations (von Szalay and Raring, 2018). While 

upwards of 60 strata are not inherently too many strata, the delineations of the strata boundaries 

were subjectively chosen during a time where less information was known about the demersal 

species set. Furthermore, the existence of such numerous strata can cause problems computing 
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sample-level stratum variances, as some strata can become undersampled to the extent that it is 

impossible to estimate a variance or variances are estimated with uncertainty too high to provide 

meaningful abundance estimates. From these preliminary results on the GoA survey design, an 

unbiased survey design can be optimized with less strata than used currently (e.g., 10-20 strata 

instead of 55-59). Integral to potentially changing the survey design 

in the GoA is understanding the current performance and tradeoffs of the present survey design. 

Metrics such as true CV, relative bias, and RRMSE of CV can be used to show any deficiencies 

in the current design and how to improve future survey designs and sampling allocations. The 

uncertainty associated with the sample CVs is related to its reliability as a data weight in some 

stock assessments (Francis, 2011) but is often overlooked in fisheries science despite such 

estimates themselves often being highly uncertain (Kotwicki and Ono, 2019). The slight negative 

bias in the sample CVs relative to the true CV, especially for highly variable species 

(Sebastes spp., Figures 8 and 9), contributed to the magnitude of the RRMSE of CV, and was 

expected given the patchy nature of these species’ distributions. It is key to emphasize temporal 

variability in both the estimates and their associated uncertainties when evaluating and 

planning reliable and quality surveys. 

These solutions are intended to objectively guide future survey designs we expect that the 

actual boundaries of the strata would be further modified based on expert opinion, logistical 

aspects of the survey operation, or other information sources prior to implementation. For 

example, the way the optimization partitioned depth and longitude resulted in unnatural 

longitudinal cuts that split islands, bays, and inlets. If this produces features that do not seem 

consistent with other data or knowledge of the system, other variables could be used to determine 
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stratification and additional fine-scale habitat features could be incorporated as covariates in the 

operating model. Post-hoc, the shapes of the strata may also be changed to increase the 

feasibility and representation of the design. For example, some GoA groundfishes are managed 

within either three management areas or five management districts that roughly divide the 

domain into western/central/eastern areas. Work is currently ongoing to evaluate the effects of 

including these management strata either into the optimization as a separate stratum variable, 

conducting the optimization separately in each management strata, or through some post-

stratification process. Survey teams may also be interested in the average distance among 

stations produced by optimal allocation, as logistical challenges may prevent certain parts of the 

spatial domain to be surveyed in a cost-efficient manner. For example in the current GoA BTS 

survey, one- and two-boat allocations currently do not sample the deepest strata due to time 

constraints. Survey design optimization packages like the SamplingStrata package (Barcaroli, 

2014) can also incorporate survey costs with respect to survey duration per station or distance 

from port or limit the spatial domain to feasible depth ranges and trawlable (i.e., accessible) 

areas. The advantage of this systematic approach is that these modifications can be evaluated 

in a reproducible and transparent way to document the survey design process. 

In addition to redesigning the stratification and sample allocation of existing surveys, t he 

framework presented here could also be used to design surveys in new regions, or to optimize 

survey effort allocation within an existing stratification. However, applying this complete 

framework to optimize surveys may not always be feasible given the requirement of thorough 

species distribution modelling efforts to predict population density across the spatial domain at 

the resolution of the sampling unit. Fortunately, the optimization is a two-step process that first 
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creates stratifications and then applies a multivariable optimal allocation algorithm (Bethel, 

1989). Thus, in cases where a complete surface of density predictions is not available, the Bethel 

algorithm can be used on its own to provide optimal effort allocations given pre-specified strata 

boundaries and historical strata-level sampling means and variances. The framework of 

specifying CV constraints would be similar to our approach but without the implementation of a 

genetic algorithm to find optimal strata boundaries. For instance, we could have used the Bethel 

algorithm on the GoA survey example with the 59 previously defined strata, where data inputs 

would be the historical sample strata means and variances. This reduced version of the 

optimization framework could be applied as an intermediary approach, providing the time and 

additional data needed to complete the species distribution modeling necessary to perform the 

full optimization. Alternatively, survey planners could opt for one optimized stratified survey 

and adjust allocations using the Bethel algorithm based on potential future effort levels while 

making these new strata boundaries constant. We do not explicitly recommend that the 

stratification be changed between times with different sampling effort. However, if such changes 

were implemented, the survey time series would still be easily interpretable as we expect all 

stratified random sampling designs to produce unbiased estimates. 

By leveraging the nearly 25-year time series of survey data, we can both incorporate the 

observed spatiotemporal variation to inform the design of the survey to meet a desired level of 

precision and continue to do so as data accrue over time. The updating of information over time 

reflects a major advantage of a survey design that can improve over time, and this framework is 

one way to provide an explicit but flexible framework for that process. That said, survey 

teams often have to contend with environmental changes that may cause species distributions to 
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shift from their previously predicted distributions (e.g., Muhling et al., 2020). Such distribution 

shifts can influence both the optimality of the previous survey design and more fundamentally 

bias estimates due to changes in catchability and spatial availability. Survey designs can be 

flexibly optimized to account for environmental information and then updated based on short-

term environmental forecasts. This could be done through an extension of our framework, by 

including the relevant dynamic environmental covariates in the operating model (e.g., Thorson, 

2019). If such distribution shifts are recent or ongoing it may be prudent to conduct the 

optimization based on the predicted population densities in only the most recent years (e.g., 

Ault et al., 1999) . 

Fisheries-independent surveys provide the foundation for scientifically sound fisheries 

management, thus the design of those surveys should be optimized for multiple scientific 

objectives. Using a heuristic approach, we designed a stratified survey design optimization that 

meets the objectives of producing precise abundance indices with minimal sampling intensity for 

multiple species. Major advantages of this approach are its explicit objectives of optimality and 

maximal precision, flexibility of inputs and constraints, and ability to communicate the expected 

impacts on the data products for downstream analyses. Systematically optimized survey designs 

can quickly accommodate rapid modifications in sample size or species prioritization that often 

arise as conditions change before or during a survey. The framework outlined here can be 

modified to incorporate different operational constraints (e.g., total sample sizes, inaccessible 

sampling units, and more detailed costs of sampling), species sets and species-specific precision 

constraints, and data inputs. Given the prevalence of multispecies surveys in fisheries and 

wildlife management among other applications, we hope that future survey design research will 
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use and extend this approach for multispecies survey optimization to better balance objectives 

and further explore the tradeoffs inherent with surveying species with differing distributions of 

abundance. 

Supplementary Material 

The following supplementary material is available at ICESJMS online. Supplementary Material 1 

contains technical details for the operating model. Supplementary Material 2 is the predicted spatial 

distributions for each species. Supplementary Material 3-10 contains additional result plots referred 

to in the main text. 
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668 Figure 1: F      lowchart of the multispecies stratified survey optimization.   
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Figure 2: Predicted mean density across years (kg km-2) for each species included in the survey 

optimization across the Gulf of Alaska. Bottom right panel shows the bathymetry within the 

survey footprint along with the 200 m isobath     , which is a general delineation of species 

distributions. Refer to the Supplementary S1 for a brief explanation of the operating model used 

to produce these predicted densities and Supplementary S2 for predicted densities by year.     
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Figure 3:      Representative examples of strata boundary maps arising from solutions for the 

species-specific CV constraint optimization for five, ten, and fifteen strata across the three effort 

(boats) scenarios with simulated stations randomly sampled according to each optimized 

stratified survey superimposed. The colors represent different strata  . 
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Figure 4: Total optimized sample size (number of stations) across coefficient of variation 

(CV) constraint, accounting only for spatial variability (top) or both spatial and temporal 

variability (bottom).      The five-strata optimization solutions are shown, but qualitative results 

were consistent across strata (Supplementary S4). Both optimizations were conducted under 

the one-CV constraint approach where all species have the same CV constraint in the 

optimization. Horizontal dotted grey lines indicate the sampling levels for one, two, and three 

boat-effort scenarios  . 
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Figure 5: Comparison of the relative difference between expected and realized coefficient of 

variation (CV) of abundance. Specifically, this shows the distribution of percent differences of 

the true CVs,      calculated for each year, relative to the CV constraint associated with a five-

strata, two boat     -effort scenario (n = 550) for all included species. The left and center plots 

show optimizations using the one-CV constraint approach. The right plot shows an optimization 

using the species-specific CV constraint approach (refer to the main text for how CV constraints 

were specified across species). For the species-specific CV constraint approach, a value of 0.10 

was chosen as the lowest a population CV constraint could be specified (indicated by the blue 

borders). A p ositive value indicates that the observed      true CV is greater than the CV 

constraint that was specified           in the optimization. A n egative or near-zero value 

indicates that the observed true CV is within the CV constraint specified in the 

optimization. Results were qualitatively consistent with other total effort and strata scenarios. 
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Figure 6: Distribution of true coefficient of variation (CV) across observed years for each 

species, level of sampling effort (color) and number of strata for the species-specific CV 

constraint approach. 
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Figure 7: Distribution of percent relative bias in the simulated mean density estimates across 

years relative the true mean density for each species, level of sampling effort (color) and      

two strata levels (15 and 60 to represent the range investigated) for the species-specific CV 

constraint approach. Results were similar for the one-CV constraint approach (Supplementary 

S8).  
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Figure 8: Distribution of relative root mean square error (RRMSE) of the coefficient of variation 

(CV) across observed years for a subset of species (see Supplementary S7 for a full version), 

level of sampling effort (color) and number of strata for the one-CV constraint approach (left set 

of plots) and species-specific CV constraint approach (right set of plots) . 
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Figure 9: Distribution of percent relative bias in the simulated coefficient of variation (CV) 

estimates across observed years relative the true CV for a subset of species (see 

Supplementary S9-10 for a full version), level of sampling effort (color) and two strata levels (15 

and 60 to represent the range investigated) for the species-specific CV constraint approach. 
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